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MOTIVATING PROBLEM—PREDICTING TRAITS OF MILK



MOTIVATING PROBLEM—PREDICTING TRAITS OF MILK

The quality and the value of a food product (e.g. milk) are determined by its
chemical and technological traits (properties).

The process of measuring each of these in a lab can be costly and
time-consuming.

Spectrometry: examining how light at different wavelengths passes
through the substance (cheaper, quicker, non-destructive)

Aim: Devise prediction models which can reliably predict the traits from a
given spectral reading.
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MOTIVATING PROBLEM — MID-INFRARED SPECTRA OF MILK

P = 538 wavenumbers
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Traits (R = 3) are measured in a lab:

• heat stability
— for making infant formula;

• rennet coagulation time (RCT)
— for making cheese;

• casein content
— major protein.

We have N = 363 complete observations. (large P, small N problem)



PARTIAL LEAST SQUARES

Predictors: (x1, ...,xN)⊺ = X ∈ RN×P Responses: (y1, ..., yN)⊺ = Y ∈ RN×R

Suppose there is a common projection onto a Q-dimensional latent space
with variables Z ∈ RN×Q,

X = ZW⊺ + Ex ,

Y = ZC⊺ + Ey ,

whereW and C are loading matrices, and Ex and Ey are residuals.

PLS: Iteratively find argmax ∥Cov(X,Y)∥.

• UseW and C estimates to predict traits from new sample spectra.



PARTIAL LEAST SQUARES

+ Fast, easy, accurate*, easy to modify the “regression” part

– Not a statistical model Ô⇒ no uncertainty, difficult to introduce
sample correlations

~ Choosing Q can be tricky, strongly depends on the quality of data



BAYESIAN PARTIAL LEAST SQUARES

(Spectra) (Traits)
xn yn

zn

Each sample is generated through:

xn = Wzn + εn, n = 1, ...N,

yn = Czn + ηn,

where zn
iid∼ N(0, IQ), εn iid∼ N(0,Σ) and

ηn
iid∼ N(0,Ψ).

This allows for likelihood-based inference of model parameters:

p(X,Y ∣Θ) =
N
∏
n=1

f(xn, yn∣Θ),

where Θ = (Z,W,C,Σ,Ψ, . . .) are all (unknown) model parameters.



BAYESIAN PARTIAL LEAST SQUARES

This allows for likelihood-based inference of the model:

• Frequentist methods for these types of models typically require Q ≤ R
which greatly limits prediction utility.

• Bayesian inference with appropriate priors bypasses this constraint.
→ Bayesian partial least squares (BPLS)

Priors: Here we assume vague(ish) priors: apart from regularising model
fitting, they won’t heavily contribute to the final predictions.

*Identifiability of Θ is not required for predictions.



SHRINKAGE ON THE LATENT VARIABLES

Structure of loading matrix:
W =

Ô⇒ Subsequent latent
components contribute less
to the signal.

→ Suppose Q is infinite:

• Take a stochastically increasing
sequence τ = (τ1,τ2, ...).

• Elements ofW are given conjugate
normal priors such that

V[wpq]∝
1
τq

, p=1,...,P, q=1,2,... .

• Multiplicative gamma process prior:

τq =
q
∏
k=1

δk, where δk ∼ Gamma(α,β).



SPARSITY, PRIORS AND INFERENCE

Large parts of the spectrum may tell you nothing about the traits.

Response part of BPLS: yn = Czn + ηn, n = 1, ...,N

We consider two sparse variants:

• Spike-and-slab — sets some columns of C to be exactly zero (ss-BPLS)
→Corresponds to Two-Way Orthogonal PLS (O2-PLS)

• Bayesian LASSO — emulates the ℓ1-penalty on elements of C (L-BPLS)
→Corresponds to sparse PLS (sPLS)

Can assign conjugate priors everywhere → Gibbs sampling

Output: Posterior predictive distribution of Ynew∣Xnew,D
(marginalised over parameter posterior)



MOTIVATING PROBLEM — MID-INFRARED SPECTRA OF MILK

P = 538 wavenumbers
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Traits (R = 3) are measured in a lab:

• heat stability
— for making infant formula;

• rennet coagulation time (RCT)
— for making cheese;

• casein content
— major protein.

We have N = 363 complete observations. (large P, small N problem)



MILK MIR SPECTRAL DATA RESULTS
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• L-BPLS is consistently the most accurate method.

• Statistical model outputs have a lot more utility.



MILK MIR SPECTRAL DATA RESULTS
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MOTIVATING PROBLEM — SERS-BASED PH SENSORS

pH sensors using surface-enhanced Raman spectroscopy
→ detect product spoilage or indicate mastitis.

P = 1733 wavenumbers
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The pH of two cartons of milk is
measured in a lab over 6 days:

• Very small dataset (N = 11) —
can we recover any signal?



MILK SERS DATA RESULTS
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Milk sample 1
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Milk sample 2
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Milk sample 3

• Standard PLS methods fail to identify signal + cross-validation
methods used for finding Q really struggle here.

• BPLS methods manage to produce reasonable point predictions but
highlight the uncertainty due to the small dataset.



TOWARDS HIERACHICAL MODELLING



Paper:
Urbas, S., Lovera, P., Daly, R., O’Riordan, A., Berry, D., & Gormley, I. C.
(2024). Predicting milk traits from spectral data using Bayesian
probabilistic partial least squares regression. The Annals of Applied
Statistics, 18(4), 3486–3506.

Code:

• bplsr package available on CRAN.



SPARSITY — SPIKE-AND-SLAB
• Idea: large components explaining variation in X may play no part in

explaining the variation in Y

• In the model, this implies that some columns of Cmay be zero.

• Spike and slab approach: For each column introduce Bernoulli
variables bq, q = 1, 2, ... which can “switch” the latent variable on and
off.

With B = diag(b1,b2, ...),the response part of
the model becomes

yn = CBzn + εn.

Elements of B can be inferred via posterior
Gibbs sampling.

C =



SPARSITY — BAYESIAN LASSO

• Explicit prior of the form π0(C)∝ exp (−λ∑r,q ∣crq∣) , λ > 0 results in
an intractable and non-differentiable posterior

• Park and Casella (2009) uses a scale mixture of normal distributions to
get a similar form:

λ

2
e−λ∣c∣ = ∫

∞
0

1√
2πv

ec
2/(2v) × λ2

2
eλ

2v/2 dv.

• So

crq∣τq, vrq ∼ N(0, vrq/τq), vrq∣λ ∼ Exp(λ2/2), r = 1, ...,R, q = 1, 2, ...

gives us what we want.

• Posterior conditionals of vrq are inverse-Gaussian so can still use Gibbs


