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MOTIVATING PROBLEM—PREDICTING TRAITS OF MILK




MOTIVATING PROBLEM—PREDICTING TRAITS OF MILK

The quality and the value of a food product (e.g. milk) are determined by its
chemical and technological traits (properties).

The process of measuring each of these in a lab can be costly and

time-consuming.

Spectrometry: examining how light at different wavelengths passes
through the substance (cheaper, quicker, non-destructive)

Aim: Devise prediction models which can reliably predict the traits from a

given spectral reading.
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MOTIVATING PROBLEM — MID-INFRARED SPECTRA OF MILK

P = 538 wavenumbers Traits (R = 3) are measured in a lab:

heat stability
— for making infant formula;

rennet coagulation time (RCT)
— for making cheese;

casein content

— major protein.

We have N = 363 complete observations. (large P, small N problem)



PARTIAL LEAST SQUARES

Predictors: (xy,...,xy)" = X ¢ RV*P  Responses: (y1,...,yy)" = ¥ ¢ RVE

Suppose there is a common projection onto a Q-dimensional latent space
with variables Z e RN*Q

X=ZW" +Ey,
T
Y=2ZC" +Ey,

where W and C are loading matrices, and Ey and E, are residuals.

PLS: Iteratively find argmax | Cov(X,Y)|.

Use W and C estimates to predict traits from new sample spectra.



PARTIAL LEAST SQUARES

Fast, easy, accurate*, easy to modify the “regression” part

Not a statistical model = no uncertainty, difficult to introduce

sample correlations

Choosing Q can be tricky, strongly depends on the quality of data



BAYESIAN PARTIAL LEAST SQUARES

Each sample is generated through:

(Spectra) (Traits)
Xn Yn Xp=Wzp+en, n=1,..N,
Yn=Czp+1p,
where z, i N(0,/g), €n i N(0,X) and
9 N0, V).

This allows for likelihood-based inference of model parameters:

N
p(X,¥|®) =[] f(xn,y,]©),

n=1

where ® = (Z,W,C,%,V¥,...) are all (unknown) model parameters.



BAYESIAN PARTIAL LEAST SQUARES

This allows for likelihood-based inference of the model:
Frequentist methods for these types of models typically require Q <R
which greatly limits prediction utility.
Bayesian inference with appropriate priors bypasses this constraint.

— Bayesian partial least squares (BPLS)

Priors: Here we assume vague(ish) priors: apart from regularising model
fitting, they won’t heavily contribute to the final predictions.

*|dentifiability of @ is not required for predictions.



SHRINKAGE ON THE LATENT VARIABLES

Structure of loading matrix: - Suppose Q is infinite:

W= Take a stochastically increasing
sequence T = (T4, T2, ...)-
000 0o .
e@cocser Elements of W are given conjugate
[T TN Y PR .
@ocoocecnen o . normal priors such that
[ I XX ] .
(X XN X J @ e e e l
[ Y X R V[qu] xX —, p:].,...,P, q:l,2,... .
0@eccco s o o - . ... . . Tq
— Subsequent latent Multiplicative gamma process prior:

components contribute less

q
to the signal. Tq = [ 8k, where &, ~ Gamma(x, B).
k=1



SPARSITY, PRIORS AND INFERENCE

Large parts of the spectrum may tell you nothing about the traits.

Response part of BPLS: y,=Cz,+n,, n=1,.,N

We consider two sparse variants:

Spike-and-slab — sets some columns of C to be exactly zero (ss-BPLS)
—Corresponds to Two-Way Orthogonal PLS (02-PLS)

Bayesian LASSO — emulates the {;-penalty on elements of C (L-BPLS)
—Corresponds to sparse PLS (sPLS)

Can assign conjugate priors everywhere — Gibbs sampling

Output: Posterior predictive distribution of Y™V |X"W D

(marginalised over parameter posterior)



MOTIVATING PROBLEM — MID-INFRARED SPECTRA OF MILK

P = 538 wavenumbers Traits (R = 3) are measured in a lab:

heat stability
— for making infant formula;

rennet coagulation time (RCT)
— for making cheese;

casein content

— major protein.

We have N = 363 complete observations. (large P, small N problem)



MILK MIR SPECTRAL DATA RESULTS
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L-BPLS is consistently the most accurate method.

Statistical model outputs have a lot more utility.



MILK MIR SPECTRAL DATA RESULTS
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MOTIVATING PROBLEM — SERS-BASED PH SENSORS

pH sensors using surface-enhanced Raman spectroscopy
— detect product spoilage or indicate mastitis.

P = 1733 wavenumbers The pH of two cartons of milk is
measured in a lab over 6 days:

Very small dataset (N = 11) —
can we recover any signal?

Intensity (scaled)




MILK SERS DATA RESULTS
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Standard PLS methods fail to identify signal + cross-validation
methods used for finding Q really struggle here.

BPLS methods manage to produce reasonable point predictions but
highlight the uncertainty due to the small dataset.



TOWARDS HIERACHICAL MODELLING
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Paper:
Urbas, S., Lovera, P., Daly, R., O’Riordan, A., Berry, D., & Gormley, I. C.
(2024). Predicting milk traits from spectral data using Bayesian
probabilistic partial least squares regression. The Annals of Applied
Statistics, 18(4), 3486-3506.

Code:

bplsr package available on CRAN.



SPARSITY — SPIKE-AND-SLAB

Idea: large components explaining variation in X may play no partin
explaining the variation in Y

In the model, this implies that some columns of C may be zero.

Spike and slab approach: For each column introduce Bernoulli
variables bg, g = 1,2,... which can “switch” the latent variable on and
off.

With B = diag(by, by, ...),the response part of
the model becomes

Yo =CBzp + €p.

Elements of B can be inferred via posterior

Gibbs sampling.



SPARSITY — BAYESIAN LASSO

Explicit prior of the form 7o (C) o< exp (A X, g [crgl) , A > O results in
an intractable and non-differentiable posterior

Park and Casella (2009) uses a scale mixture of normal distributions to

get a similar form:

2
) 7\? M2 g,

A-Ald _ f ©_ 1
2 0 2mv
So
er|Tq,qu ~ N(O, qu/Tq), qu‘}\ ~ EXp(}\Z/Z), r= l,...,R, q = l, 2,...

gives us what we want.

Posterior conditionals of vy4 are inverse-Gaussian so can still use Gibbs



