BAYESIAN PARTIAL LEAST SQUARES (BPLS)

Szymon Urbaś

Maynooth University, Ireland

:: THANKS AND ACKNOWLEDGEMENTS ::

This joint work under VistaMilk SFI Research Centre.

- Prof Claire Gormley (UCD)
- Prof Donagh Berry (Teagasc)
- Dr Pierre Lovera, Dr Rob Daly and Prof Alan O'Riordan (Tyndall Institute, Cork)

MOTIVATING PROBLEM—PREDICTING TRAITS OF MILK

MOTIVATING PROBLEM—PREDICTING TRAITS OF MILK

The quality and the value of a food product (e.g. milk) are determined by its chemical and technological traits (properties).

The process of measuring each of these in a lab can be costly and time-consuming.

Spectrometry: examining how light at different wavelengths passes through the substance (cheaper, quicker, non-destructive)

Aim: Devise prediction models which can reliably predict the traits from a given spectral reading.

MOTIVATING PROBLEM—PREDICTING TRAITS OF MILK

MOTIVATING PROBLEM — MID-INFRARED SPECTRA OF MILK

Traits (R = 3) are measured in a lab:

heat stability

- for making infant formula;
- rennet coagulation time (RCT)
 - for making cheese;
- casein content
 - major protein.

We have N = 363 complete observations. (large P, small N problem)

PARTIAL LEAST SQUARES

Predictors: $(\boldsymbol{x}_1, ..., \boldsymbol{x}_N)^\top = \boldsymbol{X} \in \mathbb{R}^{N \times P}$ Responses: $(\boldsymbol{y}_1, ..., \boldsymbol{y}_N)^\top = \boldsymbol{Y} \in \mathbb{R}^{N \times R}$

Suppose there is a common projection onto a Q-dimensional latent space with variables $Z \in \mathbb{R}^{N \times Q}$,

$$\boldsymbol{X} = \boldsymbol{Z} \boldsymbol{W}^{\top} + \boldsymbol{E}_{\boldsymbol{X}},$$
$$\boldsymbol{Y} = \boldsymbol{Z} \boldsymbol{C}^{\top} + \boldsymbol{E}_{\boldsymbol{Y}},$$

where W and C are loading matrices, and \boldsymbol{E}_{X} and \boldsymbol{E}_{Y} are residuals.

PLS: Iteratively find $\operatorname{argmax} \|\operatorname{Cov}(X, Y)\|$.

• Use W and C estimates to predict traits from new sample spectra.

PARTIAL LEAST SQUARES

Fast, easy, accurate*, easy to modify the "regression" part

Not a statistical model \implies no uncertainty, difficult to introduce sample correlations

Choosing Q can be tricky, strongly depends on the quality of data

BAYESIAN PARTIAL LEAST SQUARES

This allows for likelihood-based inference of model parameters:

$$p(\boldsymbol{X},\boldsymbol{Y}|\boldsymbol{\Theta}) = \prod_{n=1}^{N} f(\boldsymbol{x}_n, \boldsymbol{y}_n | \boldsymbol{\Theta}),$$

where $\Theta = (\mathbf{Z}, W, C, \Sigma, \Psi, ...)$ are all (unknown) model parameters.

BAYESIAN PARTIAL LEAST SQUARES

This allows for likelihood-based inference of the model:

- Frequentist methods for these types of models typically require $Q \le R$ which greatly limits prediction utility.
- Bayesian inference with appropriate priors bypasses this constraint.
 → Bayesian partial least squares (BPLS)

Priors: Here we assume vague(ish) priors: apart from regularising model fitting, they won't heavily contribute to the final predictions.

*Identifiability of Θ is not required for predictions.

SHRINKAGE ON THE LATENT VARIABLES

Structure of loading matrix: W =

	٠	•	٠	٠	٠	٠	٠	•	•	·	•	•	•	•		•	
	•	•	•	•	•	•	•		•								
•••	•	•	•	•													
.	•	•															
	•	•	•	•	•	•	•	•	•	•	•	·	Ĩ	Ċ			
•••	•	•	•	•	•	•	•	•	•	•	•	•	•	•			
•••	٠	•	٠	٠	٠	•	٠	٠	·	·	·	·			·		
		•	•	•													

 \rightarrow Suppose Q is infinite:

- Take a **stochastically increasing** sequence $\tau = (\tau_1, \tau_2, ...)$.
- Elements of *W* are given conjugate normal priors such that

$$\mathbb{V}[w_{pq}] \propto \frac{1}{\tau_q}, \quad p=1,\ldots, \mathbb{P}, q=1,2,\ldots.$$

⇒ Subsequent latent components contribute less to the signal.

Multiplicative gamma process prior:

$$\tau_q = \prod_{k=1}^q \delta_k$$
, where $\delta_k \sim \text{Gamma}(\alpha, \beta)$.

SPARSITY, PRIORS AND INFERENCE

Large parts of the spectrum may tell you nothing about the traits.

Response part of BPLS: $y_n = Cz_n + \eta_n$, n = 1, ..., N

We consider two sparse variants:

- Spike-and-slab sets some columns of C to be exactly zero (ss-BPLS)
 →Corresponds to Two-Way Orthogonal PLS (O2-PLS)
- Bayesian LASSO emulates the l₁-penalty on elements of C (L-BPLS)
 →Corresponds to sparse PLS (sPLS)

Can assign conjugate priors everywhere \rightarrow Gibbs sampling

Output: Posterior predictive distribution of $\mathbf{Y}^{new} | \mathbf{X}^{new}, \mathbf{D}$ (marginalised over parameter posterior)

MOTIVATING PROBLEM — MID-INFRARED SPECTRA OF MILK

Traits (R = 3) are measured in a lab:

heat stability

- for making infant formula;
- rennet coagulation time (RCT)
 - for making cheese;
- casein content
 - major protein.

We have N = 363 complete observations. (large P, small N problem)

MILK MIR SPECTRAL DATA RESULTS

- L-BPLS is consistently the most accurate method.
- Statistical model outputs have a lot more utility.

MILK MIR SPECTRAL DATA RESULTS

MOTIVATING PROBLEM — SERS-BASED PH SENSORS

pH sensors using surface-enhanced Raman spectroscopy → detect product spoilage or indicate mastitis.

The pH of two cartons of milk is measured in a lab over 6 days:

 Very small dataset (N = 11) can we recover any signal?

MILK SERS DATA RESULTS

- Standard PLS methods fail to identify signal + cross-validation methods used for finding Q really struggle here.
- BPLS methods manage to produce reasonable point predictions but highlight the uncertainty due to the small dataset.

TOWARDS HIERACHICAL MODELLING

Paper:

Urbas, S., Lovera, P., Daly, R., O'Riordan, A., Berry, D., & Gormley, I. C. (2024). Predicting milk traits from spectral data using Bayesian probabilistic partial least squares regression. *The Annals of Applied Statistics*, 18(4), 3486–3506.

Code:

bplsr package available on CRAN.

SPARSITY — SPIKE-AND-SLAB

- Idea: large components explaining variation in X may play no part in explaining the variation in Y
- In the model, this implies that some columns of *C* may be zero.
- Spike and slab approach: For each column introduce Bernoulli variables b_q, q = 1, 2, ... which can "switch" the latent variable on and off.

$$\boldsymbol{y}_n = CB\boldsymbol{z}_n + \boldsymbol{\varepsilon}_n.$$

Elements of *B* can be inferred via posterior Gibbs sampling.

C =

SPARSITY — BAYESIAN LASSO

- Explicit prior of the form $\pi_0(C) \propto \exp(-\lambda \sum_{r,q} |c_{rq}|)$, $\lambda > 0$ results in an intractable and non-differentiable posterior
- Park and Casella (2009) uses a scale mixture of normal distributions to get a similar form:

$$\frac{\lambda}{2}e^{-\lambda|c|} = \int_0^\infty \frac{1}{\sqrt{2\pi\nu}} e^{c^2/(2\nu)} \times \frac{\lambda^2}{2} e^{\lambda^2\nu/2} \, d\nu.$$

So

$$c_{rq}|\tau_q, v_{rq} \sim N(0, v_{rq}/\tau_q), v_{rq}|\lambda \sim Exp(\lambda^2/2), r = 1, ..., R, q = 1, 2, ...$$

gives us what we want.

• Posterior conditionals of v_{rq} are inverse-Gaussian so can still use Gibbs