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Why integrated differential analysis?
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The challenge

Gene expression and DNA methylation are interconnected biological processes.

Aim: identification of differentially methylated CpG sites (DMCs) and
differentially expressed genes (DEGs) between e.g., healthy and affected
samples.

Typically DMCs and DEGs are identified through independent analyses of
methylation and gene expression data; relations between them are
subsequently explored.

Typically DMCs and DEGs detected using t-test/p-valued based approaches
e.g., methods such as limma1 state of the art.

Inherent dependencies and biological structure generally ignored.

Propose a model-based clustering approach that allows for joint modelling of
multiple data sets, incorporation of biological dependencies and simultaneous
identification of DMCs and DEGs.

1Ritchie et al [2015]
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Our proposal: idiffomix

A joint mixture model that integrates information from both data types at
the modelling stage, enabling simultaneous identification of DMCs and DEGs.

Parameter estimation: an expectation-maximisation algorithm.

Analyse RNA-Seq and DNA methylation array data from matched healthy
and breast cancer samples.

Several non-differential genes, under independent analyses, had high likelihood
of being DEGs under the integrated analysis.

Gene ontology analysis indicated DMCs and DEGs involved in important,
cancer related, biological processes and pathways.

Cross-omics information simultaneously utilised providing comprehensive view.

An open source R package idiffomix is available.
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Breast cancer study data
Analyse RNA-Seq and DNA methylation array data from N = 5 matched
healthy and breast cancer samples.

RNA-Seq data: log-fold changes between tumour and benign samples for
G = 15, 722 genes.

For gene g:

xg = (xg1, . . . , xgn, . . . , xgN )

where xgn = log-fold change in gth gene from nth patient.

Methylation data: difference in M -values ( = logit transformed beta values)
between tumour and benign samples at C = 94, 873 CpG sites in promoter
regions.

For CpG site c on gene g:

ygc = (ygc1, . . . , ygcn, . . . , ygcN )

where ygcn = difference in M-values at CpG site c, on gene g, patient n.
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Gene expression and methylation data
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DEGs...

Expression levels at gene g assumed to undergo one of K = 3 possible state
changes between benign and tumour conditions:

▶ Downregulated (E-): expression levels decrease (large negative log-fold
change) between tumour and benign samples.

▶ Upregulated (E+): expression levels increase in tumour sample (large
positive log-fold change).

▶ Non-differentially expressed (E0): no change (log-fold change ≈ 0 ).
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...and DMCs

Methylation levels at CpG site c assumed to undergo one of L = 3 possible
state changes:

▶ Hypomethylated (M-): methylation level decreases (large negative
differences) between tumour and benign samples.

▶ Hypermethylated (M+): methylation increases in tumour sample (large
positive differences).

▶ Non-differentially methylated (M0): difference in M-values ≈ 0.
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A joint mixture model

Mixture model: incomplete data approach employed to facilitate inference.

Introduce latent variables:

ugk = 1 if gene g belongs to cluster k, 0 otherwise.

vgcℓ = 1 if CpG site c, located in neighbourhood of gene g,
belongs to cluster ℓ, 0 otherwise.

Use these latent variables to account for nested structure, integrating the
expression and methylation mixture models together.
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The idiffomix joint mixture model
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The idiffomix joint mixture model

Within each component, log-fold change data assumed to be i.i.d Gaussian:

xgn|(ugk = 1) ∼ N(µk, σ
2
k)

Differences in M-values also assumed to be i.i.d. Gaussian within a component:

ygcn|(vgcl = 1) ∼ N(λl, ρ
2
l )

Proportion of genes in each cluster: τ = (τ1, . . . , τK).

Dependencies between genes and CpG sites accounted for through
L×K matrix parameter π.

πl|k = probability of a CpG site belonging to cluster l,
given its associated associated gene ∈ k.
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The idiffomix joint mixture model
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The idiffomix joint mixture model

P (X,Y ,U ,V |τ ,π,θ,ϕ) =
G∏
g=1


K∏
k=1

P (xg |θk)ugk

Cg∏
c=1

L∏
l=1

P (ygc|ϕl)vgcl


×

G∏
g=1

K∏
k=1

τk

Cg∏
c=1

L∏
l=1

πl|k
vgcl


ugk

If πl|k = πl|k′ for all k, k′ ⇒ status of CpG sites and genes are independent
⇒ model is equivalent to two independent mixture models.

Inference proceeds via EM algorithm.

Due to independence of chromosomes and to ease the computational burden,
model fitted to each chromosome independently in parallel.

Initialisation: quantile based approach to specify cluster memberships.

Convergence: absolute change in all parameter estimates between successive
iterations < 1× 10−5.
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idiffomix: inference

E-step: required expected values of the latent variables are intractable.

Tractable approximation via computing conditional expected value of latent
variable given the others2 at E-step.

Iteratively computed until convergence:

E(ugk| · · · ) ≈ u
(S)
gk = ûgk

E(vgcl| · · · ) ≈ v
(S)
gcl = v̂gcl

E(ugkvgcl| · · · ) ≈ u
(S)
gk v

(S)
gcl = ûgkvgcl.

In practice, S ≈ 10 required to achieve convergence per EM iteration.

2Salter-Townshend and Murphy [2013], Chamroukhi and Huynh [2018]
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idiffomix: inference

M-step: the expected complete data log-likelihood function is maximised with
respect to the model parameters τ , π, θ and ϕ ⇒ closed form solutions.

On convergence, for each gene and CpG site:
latent variable estimates = posterior probabilities of cluster membership.

Cluster assignment performed using the maximum a posteriori (MAP) rule:
▶ DEGs: genes in clusters E- and E+

▶ DMCs: CpGs in clusters M- and M+
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Simulation study: set up

Simulated data that mirrored the breast cancer data settings.

Considered three settings of π.

Values represent probabilities of a CpG site belonging to cluster M+, M0 or
M-, conditional of their associated gene belonging to cluster E-, E0 or E+.

(a) Case 1: à la breast cancer data

E- E0 E+
M+ 0.4 0.05 0.1
M0 0.5 0.9 0.5
M- 0.1 0.05 0.4

(b) Case 2: high level of dependency

E- E0 E+
M+ 0.8 0.1 0.1
M0 0.1 0.8 0.1
M- 0.1 0.1 0.8

(c) Case 3: independence between
datasets

E- E0 E+
M+ 0.2 0.6 0.2
M0 0.2 0.6 0.2
M- 0.2 0.6 0.2
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Simulation study: results

Mean performance metrics for 100 simulated datasets given π under case 1.

(a) DEG identification performance

FDR Sensitivity Specificity ARI
idiffomix 0.014 (0.011) 0.976 (0.015) 0.997 (0.003) 0.966 (0.017)
mclust 0.102 (0.049) 0.873 (0.046) 0.975 (0.015) 0.800 (0.041)
limma 0.038 (0.021) 0.764 (0.064) 0.993 (0.005) 0.760 (0.059)

(b) DMC identification performance

FDR Sensitivity Specificity ARI
idiffomix 0.016 (0.005) 0.999 (0.001) 0.997 (0.001) 0.986 (0.004)
mclust 0.019 (0.006) 0.999 (0.001) 0.996 (0.001) 0.983 (0.005)
limma 0.058 (0.006) 1.000 (<0.001) 0.987 (0.002) 0.948 (0.006)

*Standard deviations in parentheses and the top performing method for each metric highlighted in boldface.
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Application on breast cancer data
Matched healthy and tumour tissue from N = 5 patients, RNA-seq (≈ 15k
genes) + methylation array (≈ 94k CpG sites).
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Application on breast cancer data
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Application on breast cancer data
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Genes of interest
Genes for which differential status differed between independent and integrated
analyses of interest e.g., RADIL gene.
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Gene of interest: RADIL
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Gene of interest: RADIL
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Clustering uncertainty: BMPER
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Clustering uncertainty: BMPER
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Clustering uncertainty: BMPER
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TNFRSF18: role in development & progression of breast cancer
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TNFRSF18: role in development & progression of breast cancer

StatOmique March 2025 28 / 33



TNFRSF18: role in development & progression of breast cancer
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Independent v integrated results
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Gene enrichment analysis:
some biological processes and pathways which play essential role in breast
cancer development and prognosis identified only under idiffomix approach.
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idiffomix: take-home messages...

When identifying differential expression and methylation, should account for
inherent biological dependencies between gene sequencing and methylation
data.

Take a model-based clustering approach to identify DEGs and DMCs.

Proposed a joint mixture model that integrates both data types at the
modelling stage by directly modelling their nested structure.

Allows for a genome-wide, cross-omics analysis that simultaneously identifies
DMCs and DEGs.

Simulation studies and application to breast cancer data demonstrated utility.

General framework: could be generalized to other experimental designs or other
omics data.

idiffomix R package available.
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idiffomix: ...but!

Modelling log-fold changes and differences in M -values makes results less
biologically interpretable: model the inherent data distributions directly.

Cases where healthy and diseased tissues do not come from the same subjects,
or when sample sizes differ between conditions require model changes?

Integrate other data? E.g., proteomics + methylation + RNA-Seq?

Spatial information also available: locations of CpG sites known and could be
incorporated (and same for genes).

Methylation patterns and gene expression regulation also dependent on other
factors e.g., environmental stress, food habits: include as covariates.
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Thank you!
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