Integrated differential analysis of multi-omics data using a joint mixture model: idiffomix

Koyel Majumdar*, Florence Jaffrézic[†], Andrea Rau[†], Isobel Claire Gormley*, Thomas Brendan Murphy*

*School of Mathematics and Statistics, University College Dublin, Ireland. ψINRAE, Université Paris-Saclay, France.

1/33

StatOmique March 2025

Why integrated differential analysis?

StatOmique March 2025

The challenge

- Gene expression and DNA methylation are interconnected biological processes.
- Aim: identification of differentially methylated CpG sites (DMCs) and differentially expressed genes (DEGs) between e.g., healthy and affected samples.
- Typically DMCs and DEGs are identified through independent analyses of methylation and gene expression data; relations between them are subsequently explored.
- Typically DMCs and DEGs detected using t-test/p-valued based approaches e.g., methods such as limma¹ state of the art.
- Inherent dependencies and biological structure generally ignored.
- Propose a model-based clustering approach that allows for joint modelling of multiple data sets, incorporation of biological dependencies and simultaneous identification of DMCs and DEGs.

¹Ritchie et al [2015]

StatOmique March 2025

Our proposal: idiffomix

- A joint mixture model that integrates information from both data types at the modelling stage, enabling simultaneous identification of DMCs and DEGs.
- Parameter estimation: an expectation-maximisation algorithm.
- Analyse RNA-Seq and DNA methylation array data from matched healthy and breast cancer samples.
- Several non-differential genes, under independent analyses, had high likelihood of being DEGs under the integrated analysis.
- Gene ontology analysis indicated DMCs and DEGs involved in important, cancer related, biological processes and pathways.
- Cross-omics information simultaneously utilised providing comprehensive view.
- An open source R package idiffomix is available.

StatOmique March 2025 4/33

Breast cancer study data

- \bullet Analyse RNA-Seq and DNA methylation array data from N=5 matched healthy and breast cancer samples.
- \bullet RNA-Seq data: log-fold changes between tumour and benign samples for G=15,722 genes.
- \bullet For gene g:

$$\begin{array}{rcl} \pmb{x}_g &=& (x_{g1},\dots,x_{gn},\dots,x_{gN}) \\ \text{where } x_{gn} &=& \text{log-fold change in } g\text{th gene from } n\text{th patient}. \end{array}$$

- \bullet Methylation data: difference in M-values (= logit transformed beta values) between tumour and benign samples at C=94,873 CpG sites in promoter regions.
- For CpG site c on gene g:

$$m{y}_{gc} = (y_{gc1}, \dots, y_{gcn}, \dots, y_{gcN})$$
 where $y_{acn} =$ difference in M-values at CpG site c , on gene g , patient n .

StatOmique March 2025

Gene expression and methylation data

6/33

StatOmique March 2025

DEGs...

- Expression levels at gene g assumed to undergo one of K=3 possible state changes between benign and tumour conditions:
 - Downregulated (E-): expression levels decrease (large negative log-fold change) between tumour and benign samples.
 - ► Upregulated (E+): expression levels increase in tumour sample (large positive log-fold change).
 - ▶ Non-differentially expressed (E0): no change (log-fold change ≈ 0).

StatOmique March 2025 7 / 33

...and DMCs

- Methylation levels at CpG site c assumed to undergo one of L=3 possible state changes:
 - Hypomethylated (M-): methylation level decreases (large negative differences) between tumour and benign samples.
 - ► Hypermethylated (M+): methylation increases in tumour sample (large positive differences).
 - ▶ Non-differentially methylated (M0): difference in M-values ≈ 0 .

StatOmique March 2025 8 / 33

A joint mixture model

- Mixture model: incomplete data approach employed to facilitate inference.
- Introduce latent variables:

```
u_{ak} = 1 if gene g belongs to cluster k, 0 otherwise.
```

 $v_{gc\ell} = 1$ if CpG site c, located in neighbourhood of gene g, belongs to cluster ℓ , 0 otherwise.

 Use these latent variables to account for nested structure, integrating the expression and methylation mixture models together.

StatOmique March 2025 9 / 33

StatOmique March 2025

• Within each component, log-fold change data assumed to be i.i.d Gaussian:

$$x_{gn}|(u_{gk}=1) \sim N(\mu_k, \sigma_k^2)$$

• Differences in *M*-values also assumed to be i.i.d. Gaussian within a component:

$$y_{gcn}|(v_{gcl}=1) \sim N(\lambda_l, \rho_l^2)$$

- Proportion of genes in each cluster: $\tau = (\tau_1, \dots, \tau_K)$.
- \bullet Dependencies between genes and CpG sites accounted for through $L\times K$ matrix parameter $\pi.$

 $\pi_{l|k}$ = probability of a CpG site belonging to cluster l, given its associated associated gene $\in k$.

StatOmique March 2025

StatOmique March 2025

$$\begin{split} P(\boldsymbol{X}, \boldsymbol{Y}, \boldsymbol{U}, \boldsymbol{V} | \boldsymbol{\tau}, \boldsymbol{\pi}, \boldsymbol{\theta}, \boldsymbol{\phi}) &= \prod_{g=1}^{G} \left\{ \prod_{k=1}^{K} P(\boldsymbol{x}_{g} | \boldsymbol{\theta}_{k})^{u_{gk}} \prod_{c=1}^{C_{g}} \prod_{l=1}^{L} P(\boldsymbol{y}_{gc} | \boldsymbol{\phi}_{l})^{v_{gcl}} \right\} \\ &\times \prod_{g=1}^{G} \prod_{k=1}^{K} \left\{ \tau_{k} \prod_{c=1}^{C_{g}} \prod_{l=1}^{L} \pi_{l | k}^{v_{gcl}} \right\}^{u_{gk}} \end{split}$$

- If $\pi_{l|k} = \pi_{l|k'}$ for all $k, k' \Rightarrow$ status of CpG sites and genes are independent \Rightarrow model is equivalent to two independent mixture models.
- Inference proceeds via EM algorithm.
- Due to independence of chromosomes and to ease the computational burden, model fitted to each chromosome independently in parallel.
- Initialisation: quantile based approach to specify cluster memberships.
- Convergence: absolute change in all parameter estimates between successive iterations $< 1 \times 10^{-5}$.

StatOmique March 2025

idiffomix: inference

- E-step: required expected values of the latent variables are intractable.
- Tractable approximation via computing conditional expected value of latent variable given the others² at E-step.
- Iteratively computed until convergence:

$$\mathbb{E}(u_{gk}|\cdots) \approx u_{gk}^{(S)} = \hat{u}_{gk}$$

$$\mathbb{E}(v_{gcl}|\cdots) \approx v_{gcl}^{(S)} = \hat{v}_{gcl}$$

$$\mathbb{E}(u_{gk}v_{gcl}|\cdots) \approx u_{gk}^{(S)}v_{gcl}^{(S)} = \widehat{u_{gk}v_{gcl}}.$$

• In practice, $S \approx 10$ required to achieve convergence per EM iteration.

StatOmique March 2025

²Salter-Townshend and Murphy [2013], Chamroukhi and Huynh [2018]

idiffomix: inference

- M-step: the expected complete data log-likelihood function is maximised with respect to the model parameters τ , π , θ and $\phi \Rightarrow$ closed form solutions.
- On convergence, for each gene and CpG site:
 latent variable estimates = posterior probabilities of cluster membership.
- Cluster assignment performed using the maximum a posteriori (MAP) rule:
 - ▶ DEGs: genes in clusters E- and E+
 - ▶ DMCs: CpGs in clusters M- and M+

StatOmique March 2025

Simulation study: set up

- Simulated data that mirrored the breast cancer data settings.
- Considered three settings of π .
- Values represent probabilities of a CpG site belonging to cluster M+, M0 or M-, conditional of their associated gene belonging to cluster E-, E0 or E+.

(a) Case 1: à la breast cancer data (b) Case 2: high level of dependency datasets E-E₀ E-E-E+E0 E+ E0 E+M+0.4 0.05 0.1 0.8 0.1 0.1 $\overline{\mathsf{M}}$ 0.2 0.6 0.2 M+0.9 0.5 0.1 8.0 M0 0.2 0.2 M0 0.5 M0 0.1 0.6 M-0.1 0.05 0.4M-0.1 0.1 0.8 M-0.2 0.6 0.2

(c) Case 3: independence between

16 / 33

StatOmique March 2025

Simulation study: results

ullet Mean performance metrics for 100 simulated datasets given π under case 1.

(a) DEG identification performance

	FDR	Sensitivity	Specificity	ARI
idiffomix	0.014 (0.011)	0.976 (0.015)	0.997 (0.003)	0.966 (0.017)
mclust	0.102 (0.049)	0.873 (0.046)	0.975 (0.015)	0.800 (0.041)
limma	0.038 (0.021)	0.764 (0.064)	0.993 (0.005)	0.760 (0.059)

(b) DMC identification performance

-	FDR	Sensitivity	Specificity	ARI
idiffomix	0.016 (0.005)	0.999 (0.001)	0.997 (0.001)	0.986 (0.004)
mclust	0.019 (0.006)	0.999 (0.001)	0.996 (0.001)	0.983 (0.005)
limma	0.058 (0.006)	1.000 (<0.001)	0.987 (0.002)	0.948 (0.006)

^{*}Standard deviations in parentheses and the top performing method for each metric highlighted in boldface.

StatOmique March 2025

Application on breast cancer data

• Matched healthy and tumour tissue from N=5 patients, RNA-seq (\approx 15k genes) + methylation array (\approx 94k CpG sites).

С

18/33

StatOmique March 2025

Application on breast cancer data

Application on breast cancer data

StatOmique March 2025

Genes of interest

• Genes for which differential status differed between independent and integrated analyses of interest e.g., *RADIL* gene.

RADIL cg20556639 cg04816699 cg25266895 cg03229627 cg10884288 cg26013579 cg06223466 cg03638172 cg05495949 cg27546065

StatOmique March 2025

Gene of interest: RADIL

Gene of interest: RADIL

Clustering uncertainty: BMPER

StatOmique March 2025

Clustering uncertainty: BMPER

Clustering uncertainty: BMPER

TNFRSF18: role in development & progression of breast cancer

StatOmique March 2025

TNFRSF18: role in development & progression of breast cancer

TNFRSF18: role in development & progression of breast cancer

Independent v integrated results

 Gene enrichment analysis: some biological processes and pathways which play essential role in breast cancer development and prognosis identified only under idiffomix approach.

StatOmique March 2025

idiffomix: take-home messages...

- When identifying differential expression and methylation, should account for inherent biological dependencies between gene sequencing and methylation data.
- Take a model-based clustering approach to identify DEGs and DMCs.
- Proposed a joint mixture model that integrates both data types at the modelling stage by directly modelling their nested structure.
- Allows for a genome-wide, cross-omics analysis that simultaneously identifies DMCs and DFGs
- Simulation studies and application to breast cancer data demonstrated utility.
- General framework: could be generalized to other experimental designs or other omics data
- idiffomix R package available.

StatOmique March 2025

idiffomix: ...but!

- ullet Modelling log-fold changes and differences in M-values makes results less biologically interpretable: model the inherent data distributions directly.
- Cases where healthy and diseased tissues do not come from the same subjects, or when sample sizes differ between conditions require model changes?
- Integrate other data? E.g., proteomics + methylation + RNA-Seq?
- Spatial information also available: locations of CpG sites known and could be incorporated (and same for genes).
- Methylation patterns and gene expression regulation also dependent on other factors e.g., environmental stress, food habits: include as covariates.

StatOmique March 2025 32 / 33

Bibliography

Majumdar, K. et al. (2025+)
 Integrated differential analysis of multi-omics data using a joint mixture model: idiffomix.

Under review

R package: idiffomix

Majumdar, K. et al. (2024)

A novel family of beta mixture models for the differential analysis of DNA methylation data: An application to prostate cancer.

PLOS One

R package: betaclust

Majumdar, K. et al. (2025+)

betaHMM: a hidden Markov model to identify differentially methylated sites and regions from beta-valued DNA methylation data.

Under submission

Bioconductor package: betaHMM

Thank you!

StatOmique March 2025