

The fEVE framework : a modular and descriptive framework for -omics ensemble clustering

ASLOUDJ Yanis, MOUGIN Fleur, THEBAULT Patricia yasloudj@u-bordeaux.fr

BIMMM Bio-Informatique Moléculaire : Modélisation et Méthodologie

Overview of scRNA-seq analyses (and my PhD)

2

Ensemble clustering algorithms predict robust clusters

- In scRNA-seq, hundreds of clustering methods have been developed.
- Ensemble algorithms leverage multiple methods to predict robust clusters.

• Specifically, they minimize Δ_{r} the differences between predictions.

These algorithms had yet to address some challenges in clustering

* Challenges from Lähnemann et al. 2020.

Can the differences Δ be leveraged to adress these challenges ?

* Challenges from Lähnemann et al. 2020.

We had developed scEVE to investigate this question

Feature selection

scRNA-seq datasets are *large* (20k features)

Feature selection

Prediction of base clusters

different methods yield *different* results on *different* datasets

Feature selection

Prediction of base clusters

Detection of robust clusters

Feature selection

Prediction of base clusters

Detection of robust clusters

S(C_x,C_y): *cells shared* by two clusters

Prediction of base clusters

Detection of robust clusters

S(C_x,C_y): *cells shared* by two clusters

 C_{α} : $C_{A} \cap C_{B} \cap C_{C}$ **robustness**(C_{α}): f(S)

Cells unassigned to a robust cluster are merged in a **leftover cluster.**

Feature selection

Prediction of base clusters

Detection of robust clusters

Characterization of the clusters

gene signatures are generated, or the clusters are filtered out

scEVE addressed conceptual challenges by leveraging Δ

15

scEVE addressed conceptual challenges by leveraging Δ

* Challenges from Lähnemann et al. 2020.

The performances of scEVE are great...

Evaluation of scEVE with state-of-the-art (ensemble) scRNA-seq clustering algorithms

- scEVE had good clustering performances; it even ranked best when its uncertain clusters were filtered out
- Up to 10 times faster than other ensemble algorithms
- Up to 10 times less memory usage than other ensemble algorithms

The performances of scEVE are great... but limitations exist

Evaluation of scEVE with state-of-the-art (ensemble) scRNA-seq clustering algorithms

- scEVE had good clustering performances; it even ranked best when its uncertain clusters were filtered out
- Up to 10 times faster than other ensemble algorithms
- Up to 10 times less memory usage than other ensemble algorithms

"I found the scEVE algorithm interesting, but I don't work with scRNA-seq data"

■ The modular fEVE framework addresses these limitations

SUEVE INSTAILLE	
sceve_GetSelectedFeatures()	
sceve_GetBaseClusters()	
sceve_GetCharacterizedClusters()	

coEVE inctance

fEVE framework		
	\	
 \		

Detection of robust clusters

Recursion if the robustness increases

■ The modular fEVE framework addresses these limitations

scEVE instance
sceve_GetSelectedFeatures()
sceve_GetBaseClusters()
sceve_GetCharacterizedClusters()

• Exploration of different approaches is facilitated.

:	scEVE V2 instance	
		
SCEVE	V3 instance)
sceve_GetSelectedF	eatures()	
GetBaseClusters	s_V3()	0
GetCharacterizedClu	sters_V2()	

I The modular fEVE framework addresses these limitations

scEVE instance

sceve_GetSelectedFeatures()	
sceve_GetBaseClusters()	
sceve_GetCharacterizedClusters()	

- Exploration of different approaches is facilitated.
- The framework is data-agnostic, but its instances are not.

■ The fEVE framework also raises new research questions

Take home messages

- We had developed a scRNA-seq ensemble algorithm able to quantify the uncertainty of its results at multiple resolutions. (article is under revision)
- From it, we have developed **fEVE**, a modular **framework for ensemble clustering**. It is **data-agnostic** and **easily customizable**.

https://github.com/yanisaspic/fEVE

yanis.asloudj@u-bordeaux.fr

Oh, and I'm looking for a new position in Fall 2025