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B Overview of scRNA-seq analyses (and my PhD)

In my PhD, | work on | also work on « how »

« how » to cluster cells _ toannotate and
visualize these clusters.
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As for my fFuture
work... Maybe we can
chat together :0]



B Ensemble clustering algorithms predict robust clusters

* In scRNA-seq, hundreds of clustering methods have been developed.
* Ensemble algorithms leverage multiple methods to predict robust clusters.
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* Specifically, they minimize A, the differences between predictions.



B These algorithms had yet to address some challenges in clustering

Quantifying uncertainty of

measurements and analysis results
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* Challenges from Ldhnemann et al. 2020.
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B Can the differences A be leveraged to adress these challenges ?

Quantifying uncertainty of
measurements and analysis results

Varying levels of resolution
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* Challenges from Ldhnemann et al. 2020.



Can we leverage the
differences in prediction A
instead of minimizing
them ?

sCEVE

JOBIM2025: call for
submissions close at
the end of the mont

Are A
informative ?

B We had developed scEVE to investigate this question
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B Overview of the scEVE algorithm

Feature selection

ScRNA-seq datasets are large (20k
features)



B Overview of the scEVE algorithm

densityCut: 7 cluster(s) _ _ monocled: 7 cluster(s)
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B Overview of the scEVE algorithm

densityCut: 7 cluster(s) monocled: 7 cluster(s)
e & . &
i &
. @ L ) | L ] oo
Feature selection 1 ° °
Prediction of base clusters
Seurat: 16 cluster(s) SHARP: 2 cluster(s)
Detection of robust clusters = *': -4 =
i <
==} L ==




B Overview of the scEVE algorithm

Feature selection

Prediction of base clusters

Detection of robust clusters

S(C4,C,)): cells shared by two clusters
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B Overview of the scEVE algorithm

Feature selection

Prediction of base clusters

Detection of robust clusters

S(C4,C,): cells shared by two clusters

Cq: CA N CB N CC
robustness(C,): f(S)




B Overview of the scEVE algorithm

Feature selection

Prediction of base clusters

Detection of robust clusters

S(C4,C,): cells shared by two clusters

Ca: C/.\ N CB N Cc
robustness(C,): f(S)

Cells unassigned to a robust cluster are
merged in a leftover cluster.

Combined

C.1 (0.49)
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B Overview of the scEVE algorithm

Feature selection

Prediction of base clusters

Detection of robust clusters

Characterization of the clusters

gene signatures are generated, or the
clusters are filtered out
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B Overview of the scEVE algorithm

Feature selection

Prediction of base clusters

Detection of robust clusters

Characterization of the clusters

| Recursion if the

robustness increases
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B scEVE

a

addressed conceptual challenges by leveraging A
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B scEVE addressed conceptual challenges by leveraging A

Quantifying uncertainty of
measurements and analysis results
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* Challenges from Ldhnemann et al. 2020. 16




B The performances of scEVE are great...

Evaluation of sceEVE with state-of-the-art
(ensemble) scRNA-seq clustering algorithms

* scEVE had good clustering performances ; it even ranked best when its
uncertain clusters were filtered out

* Up to 10 times faster than other ensemble algorithms
* Up to 10 times less memory usage than other ensemble algorithms
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B The performances of scEVE are great... but limitations exist

Evaluation of sceEVE with state-of-the-art
(ensemble) scRNA-seq clustering algorithms

* scEVE had good clustering performances ; it even ranked best when its
uncertain clusters were filtered out

* Up to 10 times faster than other ensemble algorithms

* Up to 10 times less memory usage than other ensemble algorithms

"There are many

approaches to select "l found the scEVE
features, predict base algorithm interesting,
clusters or detect gene but | don't work with

signatures” SscRNA-seq data"
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B The modular fEVE framework addresses these limitations

scEVE instance fEVE framework

sceve_GetSelectedFeatures()

sceve_GetBaseClusters()

sceve_GetCharacterizedClusters()
Detection of robust clusters
| Recursion if the

robustness increases
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B The modular fEVE framework addresses these limitations

scEVE instance

sceve_GetSelectedFeatures()

sceve_GetBaseClusters()

sceve_GetCharacterizedClusters()

* Exploration of different approaches
Is facilitated.

scEVE V2 instance

scEVE V3 instance

sceve_GetSelectedFeatures()

GetBaseClusters_V3() 0

U7

GetCharacterizedClusters_V2()

20



B The modular fEVE framework addresses these limitations

scEVE instance

sceve_GetSelectedFeatures()

sceve_GetBaseClusters()

sceve_GetCharacterizedClusters()

* The framework is data-agnostic, but
its instances are not.

metabolomics instance
proteomics instance
GetSelectedFeatures()

GetBaseClusters() 0

GetCharacterizedClusters()
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B The fEVE framework also raises new research questions

scEVE V2 instance

Which steps of a scRNA-
seq analysis introduce
the most experimental

variability ?

How to limitit?

metabolomics instance

Are you an expertin a
specific -omics modality ?
Let's chat!

Application Notes
in preparation
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B Take home messages

* We had developed a scRNA-seq ensemble algorithm
able to quantify the uncertainty of its results
at multiple resolutions.
(article is under revision)

* From it, we have developed fEVE, a modular
framework for ensemble clustering.
It is data-agnhostic and easily customizable.

Oh, and I'm looking for a new
position in Fall 2025

=
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